
Communication Efficient Aggregation for
Privacy Preserving Machine Learning

Undergraduate Thesis

Submitted in partial fulfillment of the requirements of

BITS F421T Thesis

By

Anish Reddy Ellore

ID No. 2016A7TS0104H

Under the supervision of:

Dr. Chittaranjan Hota

&

Dr. Paresh Saxena

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE PILANI, HYDERABAD

CAMPUS

June 30, 2020

http://www.bits-pilani.ac.in/
http://www.bits-pilani.ac.in/

Declaration of Authorship

I, Anish Reddy Ellore, declare that this Undergraduate Thesis titled, ‘Communication Efficient

Aggregation for Privacy Preserving Machine Learning’ and the work presented in it are my own.

I confirm that:

� This work was done wholly or mainly while in candidature for a research degree at this

University.

� Where any part of this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated.

� Where I have consulted the published work of others, this is always clearly attributed.

� Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made clear

exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

Certificate

This is to certify that the thesis entitled, “Communication Efficient Aggregation for Privacy

Preserving Machine Learning” and submitted by Anish Reddy Ellore ID No. 2016A7TS0104H

in partial fulfillment of the requirements of BITS F421T Thesis embodies the work done by him

under my supervision.

Supervisor

Dr. Chittaranjan Hota

Professor,

BITS-Pilani Hyderabad Campus

Date:

Co-Supervisor

Dr. Paresh Saxena

Asst. Professor,

BITS-Pilani Hyderabad Campus

Date:

ii

Acknowledgements

I would like to thank Anirudh Kasturi for his help and guidance in completion of my thesis.

iii

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE PILANI, HYDERABAD CAMPUS

Abstract

Bachelor of Engineering (Hons.)

Communication Efficient Aggregation for Privacy Preserving Machine Learning

by Anish Reddy Ellore

One of the core principles of machine learning is to collect data and use it for learning, but the

collection of data leads to privacy concerns and also network communication issues. Federated

learning is one approach of distributed learning handling privacy concerns and network commu-

nication issues. In this study we propose Fusion Learning which focuses on reducing network

communication overhead in distributed learning paradigm while preserving data privacy. The

researcher also discusses about data aggregation issues and applicability of these distributed

learning approaches on different types of datasets.

http://www.bits-pilani.ac.in/

Contents

Declaration of Authorship i

Certificate ii

Acknowledgements iii

Abstract iv

Contents v

List of Figures vii

List of Tables viii

Abbreviations ix

1 Federated Learning 1

1.1 Introduction . 1

1.2 Data . 1

1.2.1 IID data . 2

1.2.2 Non-IID data . 2

1.3 Algorithm . 2

1.4 Conclusion . 3

2 Fusion Learning 4

2.1 Introduction . 4

2.2 Algorithm . 4

2.2.1 Client’s message . 5

2.2.2 Server computation . 6

2.3 Experimetal Results . 7

2.3.1 Feature Distributions . 7

2.3.2 Local and Global Models . 7

2.3.3 Training and Testing Accuracies . 8

2.3.4 Communication Efficiency . 10

v

Contents vi

2.4 Issues . 11

3 Hybrid Fusion Learning 12

3.1 Introduction . 12

3.2 Architecture . 12

3.2.1 Client layer . 12

3.2.2 Edge layer . 13

3.2.3 Cloud layer . 14

3.3 Experimental Results . 14

3.3.1 Setup . 15

3.3.2 Performance Metrics . 16

3.3.3 Results . 16

4 Privacy Preserving Machine Learning with GAN 18

4.1 Introduction . 18

4.2 General Adverserial Networks . 18

4.2.1 GAN model construction . 19

4.3 Algorithm . 19

4.4 Experimental Results . 20

4.5 Conclusion . 22

Bibliography 23

List of Figures

2.1 Fusion Learning architecture . 5

2.2 Distribution of each feature for Credit Card, Breast Cancer, Gender Voice and
Audit datasets . 8

2.3 Comparison of Training accuracy between Centralized Learning, Federated Learn-
ing and Fusion Learning algorithms . 9

2.4 Comparison of Testing accuracies of initial local model vs final global model at
each client . 10

3.1 Architectural diagram of a hybrid fusion learning system consisting of three layers,
Client, Edge and Cloud. 13

3.2 Distributions of three features of Credit Card dataset. 16

3.3 Testing accuracy for hybrid fusion, fusion and federated learning for Credit Card,
Bank Marketing and Adult datasets. 17

4.1 Pictorial representation of GAN model reaching convergence.Generative adversar-
ial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data
generating distribution (black, dotted line) px from those of the generative distri-
bution pg (G) (green, solid line). The lower horizontal line is the domain from
which z is sampled, in this case uniformly. The horizontal line above is part of
the domain of x. The upward arrows show how the mapping x = G(z) imposes
the non-uniform distribution pg on transformed samples. G contracts in regions
of high density and expands in regions of low density of pg. After several steps of
training, if G and D have enough capacity, they will reach a point at which both
cannot improve because pg = pdata. The discriminator is unable to differentiate
between the two distributions, i.e. D(x) = 0.5 .[5] 19

4.2 Model architecture . 20

4.3 Generated images from client’s generator . 21

vii

List of Tables

2.1 Different types of distributions used to verify the distribution of individual feature
set . 5

2.2 Dataset description . 7

2.3 Comparison of training accuracies (in %) between Central Learning, Federated
Learning and Fusion learning . 8

2.4 Network usage of Federated Learning and Fusion Learning for E epochs for a
single client . 10

2.5 MNIST . 11

3.1 Dataset description . 15

3.2 Total time taken and accuracy with hybrid fusion, fusion, and federated learn-
ing.(*ime for Communication rounds not added) 17

4.1 MNIST . 22

viii

Abbreviations

GAN General Adversarial Networks

FGAN Fusion GAN

PPML Privacy Preserving Machine Learning

ML Machine Learning

ix

Dedicate to my family and teachers

x

Chapter 1

Federated Learning

1.1 Introduction

Modern mobile devices these days have access to a plethora of data, which when used will help

improve the user experience. For example, enhanced text suggestions, image recognition, and

voice recognition. The rich data enabling all these tasks is often sensitive data, resulting in a

privacy breach when sent to the data center for training. Federated learning [10] advocates

a different approach that leaves sensitive data to mobile devices and learns a globally shared

model based on the locally computed results. This federated learning approach is a distributed

machine learning paradigm which will become helpful as the data size increases. In the coming

sections description about algorithm, assumptions on data and network will be introduced.

1.2 Data

Federated learning can be used on any type of data such as image, text, time-series etc. This

because federated learning itself does not change much from classical machine learning at core

but it modifies some parts of it to make room for privacy, more about this will be discussed in the

algorithm section. The working of classical distributed machine learning algorithms rely heavily

on the assumption that data is IID (Independently and identically distributed) but since most

of the private data is Non-IID we cannot use classical distributed machine learning algorithms

for privacy preserving machine learning. In the coming sections we will discuss about two types

of data IID and non-IID.

1

Chapter 1. Federated Learning 2

1.2.1 IID data

The term IID data stands for identically and independently distributed data. The term identically

distributed means there are no trends and all the items are taken from the same probability

distribution. Independent means items are not connected in any way. In distributed learning

context, If the data is randomly distributed to different clients then client data should follow the

same distribution as of parent.

Xi ∈ D(Distribution) (1.1)

∀Xi 6= Xj , P (Xi, Xj) = P (Xi) · P (Xj) (1.2)

1.2.2 Non-IID data

Federated learning involves two levels of sampling (1) sampling the client i ∼ C and (2) Sampling

data X ∼Pi. Non-IID data in federated learning means the distributions Pi and Pj are different.

Having IID data in distributed setup means that each micro batch of data used for client’s model

update is statistically similar to a micro batch from the complete training dataset. If achieving

IID data is possible then we can achieve similar accuracy with fedrated and central learning.

1.3 Algorithm

Federated learning uses gradient update from each client to compute gradient update for the global

model, this approach enables us to do machine learning without transferring data. Fedavg[9]

algorithm uses average of all client’s model parameters to update global model. The algorithm 1

summarizes the Fedavg algorithm.

Algorithm 1 Federated Learning with clients C, minibatch size B, learning rate η

1: Server execution:
2: initialize W1

3: for each round t = 1, 2, . . . do
4: for each client k ∈ C in parallel do
5: W k

t+1 ← ClientUpdate(k,Wt)

6: Wt+1 ←
∑C

k=1W
t+1
k /C

7: end for
8: end for

1: ClientUpdate(k,W):
2: B = Split data into batches of size B
3: for batch b ∈ {B} do
4: W ←W − ηδl(w; b)
5: end for
6: send W to server

Chapter 1. Federated Learning 3

1.4 Conclusion

Federated Learning is the first globally accepted norm for PPM[1]L. The federated discussed

here is just the first step in PPML(Privacy Preserving MAchine Learning). Results of federated

learning will be discussed in coming chapter along with other approaches. Federated Learning

can be used on Non-IID data but it’s performance depends on how near the data is to IID

assumptions. Also, there are many additions to make federated more secure as mentioned in [2].

In the coming chapters more approaches will be introduced for PPML.

Chapter 2

Fusion Learning

2.1 Introduction

Federated Learning is the new norm in Privacy Preserving Machine Learning. Federated Learning

takes steps towards securing user privacy by just transmitting the model parameters instead

of sensitive user data. But, when the federated networks are deployed at scale, millions and

billions of devices are involved in the network, continuously communicating with central server

resulting in waiting and efficiency issues when the network is slower or congested. So if we were

to use federated learning at scale, we need to think of approaches reducing the communication

overhead between the client and the server, and reduce dependency between clients located in

different geographical locations. Considering these communication issues in federated learning

we propose Fusion Learning [7] an alternate approach for privacy preserving machine learning.

In Fusion Learning we reduce the communication overhead by just contacting the server once

by sending the data distribution parameters and model parameters required for rebuilding the

masked noisy client dataset.

2.2 Algorithm

The figure 2.1 depicts the Fusion Learning architecture. Fusion’s algo mainly contains three

steps

1. Clients send model parameters and distribution parameters to the server

2. Generating data at the server from the information shared by clients

3. Training a global model from the generated dataset and updating the clients with a new

global model

4

Chapter 2. Fusion Learning 5

Figure 2.1: Fusion Learning Architecture

Table 2.1: Different types of distributions used to verify the distribution of individual feature
set

norm pareto genextreme gamma uniform

exponweib lognorm expon logistic vonmises

weibull max beta cauchy lomax wald

weibull min chi cosine maxwell wrapcauchy

chi2 pearson3 powerlaw rdist erlang

2.2.1 Client’s message

The client’s message to the server consists of model distribution parameters and machine learning

model parameters required to rebuild the dataset. Each feature in the dataset gets a distribution

from the table 2.1. To determine which distribution fits a feature best, we use the P-value from

Kolmogorov-Smirnov test and to determine best parameters for a distribution we use Maximum

Likelihood Estimation. Now that we have feature distributions for each feature we need a model

to classify these features for a prediction label. So we build a model from the dataset to classify

data generated from feature distributions.

Chapter 2. Fusion Learning 6

2.2.2 Server computation

The central server collects messages from all the clients and generates a new dataset from the

shared information. At the server feature dataset is randomly generated from feature distributions

of each client, and they are labelled using corresponding client’s machine learning model. After

generating datasets from each client, all these datasets are merged to form a combined global

dataset, which is then used to build a global machine learning model. This global model is then

later sent to clients for local usage. The above discussed steps are mentioned in Algorithm 2.

The steps discussed require only one round of communication between a client and the server

resulting in a reduced communication overhead and easier maintenance of the system involving

billion clients. Although it reduces network cost, generating a dataset at the server and finding

feature distributions at the client might add computation time.

Algorithm 2 Fusion Learning

1: Client Update:
2: for i ∈ {1 to F }∀ features do
3: a. calculate the p value of each distribution using K-S test
4: b. find the maximum value from the above list to indicate its feature
5: c. store the distribution parameters for that feature
6: end for
7: for e ∈ {1 to E }∀ epochs do
8: for x ∈ {1 to X }∀ inputs do
9: Update weights given by:

10:

θk = θk − ηδLk(θk, b)

where θ = weightvector, η = learningrate, Lk = Loss

11: end for
12: end for
13: store the final weights
14: send distribution parameters and model parameters to server

1: Server Update:
2: for i ∈ {1 to C }∀ clients do
3: a. generate points for each distribution feature
4: b. find predicted value for these points using model parameters
5: end for

6: Ds =
C⋃
i=1

Di //merge data points from all clients

7: build a neural network model on the above dataset
8: transmit back the new global model parameters to the clients

Chapter 2. Fusion Learning 7

Table 2.2: Dataset description

Dataset Instances Features

Credit Card 30000 24
Breast Cancer 569 9
Gender Voice 3169 20
Audit Data 777 18

2.3 Experimetal Results

The correctness of Fusion Learning algorithm is tested on four different datasets from UCI

repository [4], namely Audit, Credit Card, Gender voice and Breast Cancer dataset. It is

important to notice the size of the datasets used from the Table 2.2 as it makes the testing

more reliable. Also, Fusion’s correctness is tested by comparing it with Federated Learning and

Central Learning on each dataset. Central Learning setup is where machine learning is done

by transmitting the client data to the server for learning. Although central learning requires

only one communication round, it has a huge network cost because of the size of the data being

transmitted. Central Learning depicts how machine learning was done before there were any

privacy concerns.

2.3.1 Feature Distributions

Every datset contains features and these features follow a particular distribution to some extent

based on the quality of the data. To find out these feature distributions we use methods

described in the section 2.2. The Figure 3.2 shows mapping between dataset features and their

corresponding feature distributions. This mapping may change based on the distribution set

your algorithm is using, whereas for the testing purposes we have used distributions from Table

2.1 as feature set. Also, some pre-processing or expert help in determining the distribution set

will result in a reduced client data processing.

2.3.2 Local and Global Models

In our experiments we use a neural network with two hidden layers and hundred hidden nodes

as the machine learning model. Same machine learning model is used at both client and server

location. A train test split of (80,20) is used for training both local and global model. In the

testing setup all the three approaches Fusion, Federated and Central use a 10 client setup.

Chapter 2. Fusion Learning 8

(a) Credit Card Data. (b) Breast Cancer Data.

(c) Gender Voice Data. (d) Audit Data.

Figure 2.2: Distribution of each feature for Credit Card, Breast Cancer, Gender Voice and
Audit datasets

2.3.3 Training and Testing Accuracies

It is important to note that the training accuracy of the fusion learning approach is the testing

accuracy because the model is not trained on the original data, but instead, it is trained on the

data generated from the distribution of features of each client.

Table 2.3: Comparison of training accuracies (in %) between Central Learning, Federated
Learning and Fusion learning

Dataset Central Learning Federated Learning Fusion Learning

Credit Card 81.11 81.60 81.09
Breast Cancer 97.08 96.35 95.62
Gender Voice 96.84 97.31 94.32
Audit Data 98.06 98.71 97.42

Chapter 2. Fusion Learning 9

0 20 40 60 80 100
epoch

0.74

0.76

0.78

0.80

0.82

ac
cu

ra
cy

models accuracy comparision

Central Learning
Fusion Learning
Federated Learning

(a) Credit Card Data.

0 20 40 60 80 100
epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

models accuracy comparision

Central Learning
Fusion Learning
Federated Learning

(b) Breast Cancer Data.

0 20 40 60 80 100
epoch

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

models accuracy comparision

Central Learning
Fusion Learning
Federated Learning

(c) Gender Voice Data.

0 25 50 75 100 125 150 175 200
epoch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

models accuracy comparision

Central Learning
Fusion Learning
Federated Learning

(d) Audit Data.

Figure 2.3: Comparison of Training accuracy between Centralized Learning, Federated Learning
and Fusion Learning algorithms

The training accuracies of all three frameworks have been illustrated in Figure 2.3 and summarized

in Table 2.3.We can see from this table that the training accuracies of fusion learning framework

fall slightly below those obtained from both federated and a centralized setup. This is because

the quality of the data generated is not on par with the original data. We can also notice that

there is a subtle difference in accuracies of Credit Card, Breast Cancer, and Audit Data sets

between Federated and Fusion Learning algorithms, whereas the accuracy of the Gender Voice

dataset, is slightly lesser. The accuracies of such datasets can be increased by adding more

distributions because determining the right distribution plays an important role in generating

artificial data. Also, more data at the client node helps in determining the corresponding feature

distribution parameters with more confidence, which results in an increase in the quality of the

generated data. As can be seen from Figure 2.4, we have also compared the accuracies on each

client node obtained using the local model and the global model built using the fusion learning

framework. We see that in all the datasets, for all clients, the global model either outperforms

the local model or achieves similar accuracies, which is also the case for a federated setup.

Chapter 2. Fusion Learning 10

1 2 3 4 5 6 7 8 9 10
Client Index

76

78

80

82

84

Te
st
in
g
ac

cu
ra
cy

local
global

(a) Credit Card Data.

1 2 3 4 5 6 7 8 9 10
Client Index

90

92

94

96

98

100

Te
st
in
g
ac

cu
ra
cy

local
global

(b) Breast Cancer Data.

1 2 3 4 5 6 7 8 9 10
Client Index

90

92

94

96

98

100

Te
st
in
g
ac

cu
ra
cy

local
global

(c) Gender Voice Data.

1 2 3 4 5 6 7 8 9 10
Client Index

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Te
st
in
g
ac

cu
ra
cy

local
global

(d) Audit Data.

Figure 2.4: Comparison of Testing accuracies of initial local model vs final global model at
each client

2.3.4 Communication Efficiency

The main aim of Fusion Learning approach is to introduce a privacy preserving machine learning

approach reducing the communication rounds involved in the federated learning setup. Federated

Learning takes E communication rounds per client to reach convergence whereas Fusion Learning

takes only one communication round to complete the setup. The size of the message shared

between the client and the server is similar for both federated and fusion. These metrics are

summarized in Table 2.4.

Table 2.4: Network usage of Federated Learning and Fusion Learning for E epochs for a single
client

Approach Network Calls Data exchanged

Federated Learning 2*E Model parameters

Fusion Learning 2 Model params + feature distr parameters

Chapter 2. Fusion Learning 11

2.4 Issues

Fusion Learning might not work on every kind of dataset, the algorithm works well when the

feature distributions parameters capture the dataset accurately. If the feature distribution

parameters fail to capture the dataset, the quality of the generated data at the server is sub par

resulting in poor performance. To show this drawback we use MNIST image dataset which is

difficult to represent using feature disributions. Table 2.5 show the testing accuracy of the three

approaches on MNSIT, as suspected Fusion performs poorly. This poor performance of fusion is

mainly because we use each pixel as a feature, the pixel feature is a binary variable only taking

0 or 1. The pixel feature follows a discontinuous distribution (bernouli) kind of like a coin toss.

As a result the generated data at the server does not represent MNIST image datset leading to

poor model performance.

Table 2.5: MNIST

Dataset Central Learning Federated Learning Fusion Learning

MNIST 98.56 98.05 71.4

Chapter 3

Hybrid Fusion Learning

3.1 Introduction

In the previous chapters two privacy preserving machine learning approaches were introduced,

both these approaches have their issues with client’s geographical location, client’s network

connection and single a point of failure at the server. To mitigate these issues, Hybrid Fusion

Learning, a new PPML model using client-edge-server architecture is introduced. Hybrid Fusion

Learning incorporates fusion Learning at the client-edge level and federated learning at the

edge-server level. This approach tries to reduce the load on server by adding edge servers, making

it more accessible to clients with different geographical background.

3.2 Architecture

Figure 3.1 shows the architecture of hybrid fusion learning containing three layers (1) client

layer, (2) edge layer, (3) cloud layer. It is divided into these layers based on the network speeds

(1) low latency (edge-cloud) (2) high latency (client-edge). This division is very convenient

because we can cluster clients based on their device’s sleep time, geographical location and

privacy policy. Fusion learning is performed between edge server and it’s corresponding clients

to reduce communication cost whereas federated is performed between the edge servers and the

cloud owing to federated learning’s better performance in low latency networks.

3.2.1 Client layer

A group of client nodes communicates to the edge layer using fusion learning, where each

client computes its local model parameters along with the distribution parameters Ψ. The

12

Chapter 3. Hybrid Fusion Learning 13

Figure 3.1: Architectural diagram of a hybrid fusion learning system consisting of three layers,
Client, Edge and Cloud.

first step in this process is to find out what distribution each feature follows. In order to do

so, Kolmogorov-Smirnov (K − S) test [3] is used to compare the sample data with reference

probability distributions and computes the probability (p) value for each distribution. The

value of p indicates the similarity of sample data with a given distribution. The probability

distribution with the highest p value is selected. All the clients build a local model and generate

the model vector. The model parameters along with the distribution parameters are transmitted

to their corresponding edge server as described in Algorithm 3.

3.2.2 Edge layer

The edge server receives the distribution and the model parameters from its clients. It uses

the distribution parameters to generate sample data points and the weights to compute the

predicted outcomes of the generated data. Once the edge server generates the points from each

client, it merges all these points to create a large dataset. This large dataset is now used to

create an intermediate machine learning model. Such models are created across all edge servers.

These edge servers participate in federated learning by transmitting their intermediate model

parameters to the cloud server. This process is repeated for every epoch as detailed in Algorithm

4. Since the communication latency from the clients to the edge server is smaller than that to a

cloud server, the transmission cost is significantly reduced. Besides, the computation load on a

single cloud server is also reduced by dividing the computation among different edge servers.

Chapter 3. Hybrid Fusion Learning 14

3.2.3 Cloud layer

The cloud server’s primary purpose is to aggregate the model weights received from the edge

server and transmit them back, as shown in Algorithm 5. It uses FedAvg algorithm to aggregate

the model parameters. After aggregation, the final values are passed back to the edge nodes.

This process is repeated until the desired accuracy is achieved.

Algorithm 3 Hybrid fusion learning: Client Update

1: Client Update:
2: for i ∈ {1 to F }∀ features do
3: a. calculate the p value for each distribution using K-S test
4: b. find the distribution ψi, with max ’p’ value
5: end for
6: for e ∈ {1 to E }∀ epochs do
7: for x ∈ {1 to X }∀ inputs do
8: Update weights given by:
9: θe+1 = θe − η∇L(θe)

10: where θ = weight vector, η = learning rate, and
11: L = Emperical loss function
12: end for
13: end for
14: send [Ψ, θe+1] to server

Algorithm 4 Hybrid fusion learning: Edge Update

1: for i ∈ {1 to C }∀ clients do
2: a. generate points from feature distribution
3: b. find predicted value for the generated points
4: using θi
5: end for

6: Ds =
C⋃
i=1

Di //merge data points from all clients

7: for e ∈ {1 to E }∀ epochs do
8: for d ∈ {1 to s }∀ Ds do
9: Update weights given by:

10: θe+1 = θe − η∇L(θe)
11: where θ = weight vector, η = learning rate, and
12: L = Emperical loss function
13: end for
14: transmit θe+1 to cloud
15: end for

3.3 Experimental Results

In this section information about architecture parameters, metrics and results are presented

Chapter 3. Hybrid Fusion Learning 15

Algorithm 5 Hybrid fusion learning: Cloud Update

1: for e ∈ {1 to E }∀ epochs do
2: for k ∈ {1 to K }∀ EdgeServers do
3:

θavg =
1

K

K∑
k=1

θk

4: //avg weights from all edge servers
5: end for
6: transmit θavg to edge server
7: end for

Table 3.1: Dataset description

Dataset Instances Features Distributions

Credit Card 30000 24

22 - Normal,
1 - Beta,

1 - Erlang

Adult 48842 14

12 - Normal,
1 - Beta,

1 - Pearson3

Bank Marketing 45211 17

15 - Normal,
1 - Lognormal,

1 - Exponential Weibull

3.3.1 Setup

To test HFL, 100 clients were used varying the edge servers count. This was done mainly to see

how different edge servers setup affects the accuracy and computation time. Three HFL setups

were used with edge servers count set to 2, 5, 10. Different HFL setups contain different no

of clients under each server because client count was not changed. More edge servers leads to

less clients per edge server, this will decrease the time taken but increases the server cost. So

determining the right amount of edge servers is important to make HFL work in scale.

Three datasets were used to check the performance of HFL namely: Credit Card, Bank Marketing,

and Adult Datasets from UCI Repository [4]. The Credit Card dataset consists of 30,000 instances

and 24 features. The distribution of the individual features of the data set is calculated using

the Fusion algorithm. Figure 3.2 shows an example with the distribution for three features of

Credit Card data set. Overall, 22 features follow a normal distribution, whereas the remaining

two features follow Erlang and beta distributions [3]. The Adult dataset consists of 48,842

instances with 14 features, 12 of which follow normal distribution while the other two follow beta

and Pearson3. The final Bank Marketing dataset consists of 45,211 instances with 17 features,

with 15 features following normal distribution while the remaining two follow lognormal and

exponential weibull distribution. This information has been consolidated in Table 3.1.

Chapter 3. Hybrid Fusion Learning 16

−4 −2 0 2 4 6 8
Pay Status

0.0

0.1

0.2

0.3

0.4

0.5

P
r
b
ab
il
it
y
 D
en
si
ty

Samples f Feature "PAY_0"
Normal Curve Fit with μnorm = -0.02,σnorm=1.12

(a) The normal distribu-
tion of feature (Pay 0)
from Credit Card dataset
with µnorm = −0.02 and
σnorm = 1.12. Overall
22 features from Credit
Card dataset follow the

normal distribution.

20 30 40 50 60 70 80
Age

0.00

0.02

0.04

0.06

0.08

P
ro
b
ab
il
it
y
 D
en
si
ty

Samples of Feature "AGE"
Beta Curve Fit with αb = 1.69,βb=5.40

(b) The beta distribution
of feature (AGE) from
Credit Card dataset with
αb = 1.69 and βb = 5.4.
Overall 1 feature from
Credit Card dataset fol-
lows the beta distribu-

tion.

0 200000 400000 600000 800000 1000000
Limit Balance (in $)

0.000000

0.000001

0.000002

0.000003

0.000004

0.000005

0.000006

0.000007

P
ro
b
ab

il
it
y
 D

en
si
ty

Samples of Feature "Limit Balance"
Erlang Curve with ker = 1.16,λer=7.32e-06

(c) The Erlang distribu-
tion of feature (Limit Bal-
ance) from Credit Card
dataset with ker = 1.16
and λer = 7.32e − 06.
Overall 1 feature from
Credit Card dataset fol-
lows the Erlang distribu-

tion.

Figure 3.2: Distributions of three features of Credit Card dataset.

3.3.2 Performance Metrics

The two metrics taken for this analysis are (1) time taken and (2) testing accuracy. To calculate

the time taken we add two variables L1(latency between edge and cloud) and L2 (latency between

client and edge). Fusion and federated learning are used to compare these results.

Timetaken = L1 ∗ (FederatedCommunicationrounds) + L2 ∗ (FusionCommunicationrounds)

+(Fusiontime) + (Federatedtime)

(3.1)

3.3.3 Results

Table 3.2 summarizes the total time taken and the accuracies of the proposed hybrid fusion

learning with different edge servers. To calculate the time taken in the table 3.2, communication

rounds and latency were not involved, this was done mainly to allow user to set latency values

(L1, L2) based on their setup. The results are compared with federated and fusion learning

techniques. In this table, K indicates the number of edge servers and C indicates the number of

clients per edge server. In both federated and fusion learning, the number of edge servers is zero

as the parameters are transmitted directly to the cloud and hence C = 100. The results in table

3.2 are not looking good because those results involve raw time without communictaion rounds,

if we assume that the the communication latency between the client and the cloud server is

Chapter 3. Hybrid Fusion Learning 17

Table 3.2: Total time taken and accuracy with hybrid fusion, fusion, and federated learn-
ing.(*ime for Communication rounds not added)

Datasets Credit Card Adult Bank Marketing

Total Time
(s)

Accuracy
(%)

Total Time
(s)

Accuracy
(%)

Total Time
(s)

Accuracy
(%)

C=50, K=2 88.36 80.9 439.8 90.2 211.32 82.2

C=20, K=5 69.26 80.6 250.8 90.1 120.12 81.9

C=10, K=10 63.66 76.9 186 86.1 91.02 76.6

C=100, K=0
(Fusion)

156.54 81.8 394.11 90.4 235.90 83.8

C=100, K=0
(Fed)

5.45 82.4 11.66 91.5 7.88 84.6

approximately ten times larger than that to the edge server [8] then HFL results will look much

better than federated and fusion.

0 20 40 60 80 100
epoch

0.77

0.78

0.79

0.80

0.81

0.82

ac
cu

ra
cy

models accuracy comparision

HierarchialFusionLearning
FederatedLearning
Fusion Learning

(a) Credit Card Data.

0 20 40 60 80 100
epoch

0.885

0.890

0.895

0.900

0.905

0.910

0.915

ac
cu

ra
cy

models accuracy comparision

HierarchialFusionLearning
FederatedLearning
Fusion Learning

(b) Bank Marketing
Data.

0 20 40 60 80 100
epoch

0.76

0.78

0.80

0.82

0.84

ac
cu

ra
cy

models accuracy comparision

HierarchialFusionLearning
FederatedLearning
Fusion Learning

(c) Adult Data.

Figure 3.3: Testing accuracy for hybrid fusion, fusion and federated learning for Credit Card,
Bank Marketing and Adult datasets.

Chapter 4

Privacy Preserving Machine

Learning with GAN

4.1 Introduction

In fusion learning we try to address some of the issues from federated learning but fusion learning

cannot be applied everywhere. Fusion Learning performs poorly if we cannot recreate important

characteristics of dataset from it’s feature distribution. For example, MNIST image dataset

where each pixel is considered as a feature, where finding distribution parameters for features

will not represent characteristics of the whole image. This disability to reproduce certain type of

data results in poor model performance. To mitigate the issues in Fusion, a framework using

General Adversarial Networks [6] is introduced to reproduce data. GAN’s are known for their

ability to reproduce realistic fake data, which is exactly what we want in privacy preserving

machine learning

4.2 General Adverserial Networks

GAN is a new framework for creating generative models using adverserial training. It consists of

a generator G which tries to generate data similar to the data distribution, and a discriminator

D that tries to discriminate generated data G from the original data distribution.The goal of G

is to maximize the probability of D making a mistake. The framework resembles a mini-max

game between generator and discriminator. The GAN model reaches convergence when the

discriminator cannot distinguish the data distribution from the generated distribution G. This

is pictographically demonstrated in Fig 4.1[6]. When the model has achieved convergence

the generator distribution resembles the data distribution and the discriminator display 0.5

18

Chapter 4. Privacy Preserving Machine Learning with GAN 19

everywhere. If both generator and discriminator are multilayer perceptron, then training can be

done using backpropogation.

Figure 4.1: Pictorial representation of GAN model reaching convergence.Generative adversarial
nets are trained by simultaneously updating the discriminative distribution (D, blue, dashed line)
so that it discriminates between samples from the data generating distribution (black, dotted
line) px from those of the generative distribution pg (G) (green, solid line). The lower horizontal
line is the domain from which z is sampled, in this case uniformly. The horizontal line above
is part of the domain of x. The upward arrows show how the mapping x = G(z) imposes the
non-uniform distribution pg on transformed samples. G contracts in regions of high density
and expands in regions of low density of pg. After several steps of training, if G and D have
enough capacity, they will reach a point at which both cannot improve because pg = pdata. The

discriminator is unable to differentiate between the two distributions, i.e. D(x) = 0.5 .[5]

4.2.1 GAN model construction

For generator we take input from a random point in latent space of dimension 100 (Eg. 100

feature input vector) and output a gray scale image of 28*28 pixels. Whereas for the discriminator

we take input from a gray scale image of 28*28 pixels and output a value between 0 and 1

(probability that input belongs to data distribution). In the GAN model first layer contains

generator models and the second layer contains discriminator model, back propagation can be

used to update the generator based on the discriminator’s feedback. The Figure 4.2 summarizes

the model architecture for the generator, discriminator and the GAN model.

4.3 Algorithm

The algorithm is similar to that of fusion, but instead of finding distributions to generate data,

GAN’s generator is used to do the work for corresponding client. The Algorithm 6 summarizes

fusion GAN algorithm.

Chapter 4. Privacy Preserving Machine Learning with GAN 20

(a) Discriminator architecture. (b) Generator architecture.

(c) GAN model architecture.

Figure 4.2: Model architecture

4.4 Experimental Results

For the proof of correctness we have tested Fusion GAN using MNIST digits dataset with ten

clients. In the future work we plan to extend this to normal classification datasets like (Credit

Card). The Figure 4.3 shows the evolution of a clients’ generator with epochs, it can be observed

Chapter 4. Privacy Preserving Machine Learning with GAN 21

Algorithm 6 Fusion GAN

1: Client Update:
2: Train the generator g using GAN
3: for e ∈ {1 to E }∀ epochs do
4: for x ∈ {1 to X }∀ inputs do
5: Update weights given by:
6:

θk = θk − ηδLk(θk, b)

where θ = weightvector, η = learningrate, Lk = Loss

7: end for
8: end for
9: store the final weights

10: send the generator parameters and model parameters to server

1: Server Update:
2: for i ∈ {1 to C }∀ clients do
3: a. generate points from the client’s generator function
4: b. find predicted value for these points using client’s model parameters
5: end for

6: Ds =
C⋃
i=1

Di //merge data points from all clients

7: build a neural network model on the above dataset
8: transmit back the new global model parameters to the clients

that after training for 200 epochs the generated images were quite clear, this results in high

quality data for the server. Although images were more clear at 200 epochs, the testing accuracy

does not change much between blurry(100 epochs) data and clear(200 epochs) data. Considering

this observation we can send blurry images to the server not compromising on the privacy and

still get accurate models. The table 4.1 compares the performance of fusion GAN with the

existing approaches.

(a) 10 epochs. (b) 100 epochs. (c) 200 epochs.

Figure 4.3: Generated images from client’s generator

Chapter 4. Privacy Preserving Machine Learning with GAN 22

Table 4.1: MNIST

Dataset Central Learning Federated Learning Fusion Learning FGAN

MNIST 98.56 98.05 71.4 96.9

4.5 Conclusion

Fusion GAN overcomes some of the short comings in the fusion and proposes more generic

framework to generate data. Although there are some privacy concerns in Fusion and FGAN,

we can always overcome them with more secure message passing protocols and adding noise to

mask the original data.All the approaches mentioned so far have their issues but it is a good

first step towards achieving the final goal, Privacy Preserving Machine Learning (PPML).

Bibliography

[1] Mohammad Al-Rubaie and J. Morris Chang. “Privacy-Preserving Machine Learning:

Threats and Solutions”. In: IEEE Secur. Priv. 17.2 (2019), pp. 49–58. doi: 10.1109/MSEC.

2018.2888775. url: https://doi.org/10.1109/MSEC.2018.2888775.

[2] Keith Bonawitz et al. “Practical Secure Aggregation for Privacy-Preserving Machine

Learning”. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017.

Ed. by Bhavani M. Thuraisingham et al. ACM, 2017, pp. 1175–1191. doi: 10.1145/

3133956.3133982. url: https://doi.org/10.1145/3133956.3133982.

[3] M.H. DeGroot and M.J. Schervish. Probability and Statistics. Addison-Wesley, 2012. isbn:

9780321500465. url: https://books.google.co.in/books?id=4TlEPgAACAAJ.

[4] Dheeru Dua and Casey Graff. UCI Machine Learning Repository. 2017. url: http :

//archive.ics.uci.edu/ml.

[5] Ian Goodfellow et al. Deep learning. vol. 1. 2016.

[6] Ian J. Goodfellow et al. “Generative Adversarial Nets”. In: Advances in Neural Information

Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014,

December 8-13 2014, Montreal, Quebec, Canada. Ed. by Zoubin Ghahramani et al. 2014,

pp. 2672–2680. url: http://papers.nips.cc/paper/5423-generative-adversarial-

nets.

[7] Anirudh Kasturi, Anish Reddy Ellore, and Chittaranjan Hota. “Fusion Learning: A One

Shot Federated Learning”. In: Computational Science - ICCS 2020 - 20th International

Conference, Amsterdam, The Netherlands, June 3-5, 2020, Proceedings, Part III. Ed.

by Valeria V. Krzhizhanovskaya et al. Vol. 12139. Lecture Notes in Computer Science.

Springer, 2020, pp. 424–436. doi: 10.1007/978-3-030-50420-5_31. url: https:

//doi.org/10.1007/978-3-030-50420-5_31.

[8] L Liu et al. “Client-edge-cloud hierarchical federated learning”. In: arXiv preprint arXiv:1905.06641

(2019).

[9] Brendan McMahan et al. “Communication-Efficient Learning of Deep Networks from

Decentralized Data”. In: Artificial Intelligence and Statistics. 2017, pp. 1273–1282.

23

https://doi.org/10.1109/MSEC.2018.2888775
https://doi.org/10.1109/MSEC.2018.2888775
https://doi.org/10.1109/MSEC.2018.2888775
https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1145/3133956.3133982
https://books.google.co.in/books?id=4TlEPgAACAAJ
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://papers.nips.cc/paper/5423-generative-adversarial-nets
http://papers.nips.cc/paper/5423-generative-adversarial-nets
https://doi.org/10.1007/978-3-030-50420-5_31
https://doi.org/10.1007/978-3-030-50420-5_31
https://doi.org/10.1007/978-3-030-50420-5_31

Bibliography 24

[10] H. Brendan McMahan et al. “Federated Learning of Deep Networks using Model Averaging”.

In: CoRR abs/1602.05629 (2016). arXiv: 1602.05629. url: http://arxiv.org/abs/1602.

05629.

https://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1602.05629

	Declaration of Authorship
	Certificate
	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Federated Learning
	1.1 Introduction
	1.2 Data
	1.2.1 IID data
	1.2.2 Non-IID data

	1.3 Algorithm
	1.4 Conclusion

	2 Fusion Learning
	2.1 Introduction
	2.2 Algorithm
	2.2.1 Client's message
	2.2.2 Server computation

	2.3 Experimetal Results
	2.3.1 Feature Distributions
	2.3.2 Local and Global Models
	2.3.3 Training and Testing Accuracies
	2.3.4 Communication Efficiency

	2.4 Issues

	3 Hybrid Fusion Learning
	3.1 Introduction
	3.2 Architecture
	3.2.1 Client layer
	3.2.2 Edge layer
	3.2.3 Cloud layer

	3.3 Experimental Results
	3.3.1 Setup
	3.3.2 Performance Metrics
	3.3.3 Results

	4 Privacy Preserving Machine Learning with GAN
	4.1 Introduction
	4.2 General Adverserial Networks
	4.2.1 GAN model construction

	4.3 Algorithm
	4.4 Experimental Results
	4.5 Conclusion

	Bibliography

